Joint Kernel Learning for Supervised Image Segmentation

نویسندگان

  • Jongmin Kim
  • Youngjoo Seo
  • Sanghyuk Park
  • Sungrack Yun
  • Chang Dong Yoo
چکیده

This paper considers a supervised image segmentation algorithm based on joint-kernelized structured prediction. In the proposed algorithm, correlation clustering over a superpixel graph is conducted using a non-linear discriminant function, where the parameters are learned by a kernelized-structured support vector machine (SSVM). For an input superpixel image, correlation clustering is used to predict the superpixelgraph edge labels that determine whether adjacent superpixel pairs should be merged or not. In previous works, the discriminant functions for structured prediction were generally chosen to be linear with the model parameter and joint feature map. However, the linear model has two limitations: complex correlations between two input-output pairs are ignored, and the joint feature map should be explicitly designed. To cope with these limitations, a nonlinear discriminant function based on a joint kernel, which eliminates the need for explicit design of the joint feature map, is considered. The proposed joint kernel is defined as a combination of an image similarity kernel and an edge-label similarity kernel, which measure the resemblance of two input images and the similarity between two edge-label pairs, respectively. Each kernel function is designed for fast computation and efficient inference. The proposed algorithm is evaluated using two segmentation benchmark datasets: the Berkeley segmentation dataset (BSDS) and Microsoft Research Cambridge dataset (MSRC). It is observed that the joint feature map implicitly embedded in the proposed joint kernel performs comparably or even better than the explicitly designed joint feature map for a linear model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semi-supervised Learning Approach to Object Recognition with Spatial Integration of Local Features and Segmentation Cues

This chapter presents a principled way of formulating models for automatic local feature selection in object class recognition when there is little supervised data. Moreover, it discusses how one could formulate sensible spatial image context models using a conditional random field for integrating local features and segmentation cues (superpixels). By adopting sparse kernel methods and Bayesian...

متن کامل

Pixel Classification of Satellite Images Using a Novel Pair Wise Kernel Function Svm

In this paper we have proposed a symmetric, positive semi definite kernel function for support vector machine classifier. Pixel classification is a form of supervised image segmentation where the actual object classes present in the image are known a priori. In case of satellite image, this prior information plays a huge role to estimate the actual statistics of different land covers. The state...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Towards Self-Exploring Discriminating Features

Many visual learning tasks are usually confronted by some common diiculties. One of them is the lack of supervised information, due to the fact that labeling could be tedious, expensive or even impossible. Such scenario makes it challenging to learn object concepts from images. This problem could be alleviated by taking a hybrid of labeled and unlabeled training data for learning. Since the unl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012